If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4n^2+204n=0
a = -4; b = 204; c = 0;
Δ = b2-4ac
Δ = 2042-4·(-4)·0
Δ = 41616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{41616}=204$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(204)-204}{2*-4}=\frac{-408}{-8} =+51 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(204)+204}{2*-4}=\frac{0}{-8} =0 $
| 204n-4n^2=0 | | 4x=8x-43+10 | | m÷7=12 | | 7(3x-6)=3·8(5-7x-2) | | 0,33x=15 | | (5^x+1)-(5^x)=500 | | 0,25x-8=8 | | 3x2-35x+88=0 | | 5^x+1-5^x=500 | | 17x+3=2x+21 | | 3x-5/2=1/4 | | x2+4=3 | | 3x+4=5x+22 | | 4=9x=28=x | | 16+2⋅(5−5x)=6 | | 5x−(3−3x)+11=-32 | | 192x+156x=23 | | 14+4⋅(5+4x)=18 | | (5m+10)÷(4m-8)=0 | | 2÷7y=4 | | 7x=16−9x | | 0.5=12(x)^3 | | 2x+14/3+x-13/4=15/2 | | 0.08x+4.79=0.05x+4.64 | | 0.09x+7.85=0.04x17.45 | | -2d-18=70 | | 0.01x+2.39=2.09x-1.77 | | 35/8=4/w | | 1−4x3=−1 | | 5(x=1)=50 | | 2a+8=23-4a | | 7a+3=6-2a |